

Identifying Structure in Data: All you need to know about Dimensionality Reduction, Clustering and more

Clustering in Computer Vision

M. Saquib Sarfraz, Marios Koulakis

What is Clustering

• The purpose of cluster analysis is to group data according to the principle of similarity.

- What is similarity?
 - shape, texture, objects, semantic meaning?
 - grouping of points by similarities is one of the traditional themes extensively investigated by the Gestalt psychologists^[1]

[1] Andenberg 1973; Hartigan 1975; Murtagh and Heck 1987; Toussaint 1980; Matula and Sokal 1980)

Gestalt Theory

Perceptual grouping – the law of Prägnanz^[2]

- Grouping is key to visual perception
- Elements in a group can have properties that results from relationships
- human perception is biased towards simplicity.

Gestalt Clusters^[3]

[2] https://en.wikipedia.org/wiki/Gestalt_psychology

[3] Charles T Zahn. Graph theoretical methods for detecting and describing gestalt clusters. IEEE TOC, 1970.

Identifying Structure in Data

Gestalt Theory

Perceptual grouping – the law of Prägnanz

 Psychologist identified series of factors that predispose set of elements to be grouped (by human visual system)

Gestalt factors

Image Source: Forsyth & Ponce

Gestalt in Computer Vision

Perceptual grouping – the law of Prägnanz

• In computer vision we measure similarity by proximity.

Gestalt factors

Image Source: Forsyth & Ponce

Gestalt in Computer Vision

Perceptual grouping – the law of Prägnanz

- In computer vision we measure similarity by proximity.
- We encode factors of similarity by representation learning.

Gestalt factors

Image Source: Forsyth & Ponce

Clustering or Representation Learning

- Supervised representation learning
 - # of classes (clusters) and their assignments are known

Raw Data: Labelled

Clustered with class assignment

Clustering or Representation Learning

- Supervised representation learning
 - # of classes (clusters) and their assignments are known

Raw Data: Labelled

Clustered with class assignment

- Unsupervised representation learning
 - # of classes (clusters) and their assignments are NOT known

Raw Data: Unlabelled

Clustered without assignment

- Unsupervised representation learning
 - # of classes (clusters) and their assignments are NOT known

Raw Data: Unlabelled

Clustered without assignment

- Unsupervised representation learning
 - # of classes (clusters) and their assignments are NOT known

Raw Data: Unlabelled

Clustered without assignment

"Distinguish between the disparate clusters when the number of clusters is not known a priori." (Guberman and Wojtkowski 2002)

Guberman and Wojtkowski, "Clustering Analysis As a Gestalt Problem". Gestalt Theory, Vol 24 No.2, 2002

- Unsupervised representation learning
 - # of classes (clusters) and their assignments are NOT known

Raw Data: Unlabelled

Clustered without assignment

Clustering

 resolves assignment

- Representation learning clusters data
- Current Self Supervised Learning (SSL) can be thought of as "Deep Clustering" w/o assignment.
- The discovery or assignment of the obtained clusters can be made either directly at the model output or utilizing any clustering mechanism (e.g., K-Means) on top.

Clustering Methods

- Partition Based
- Hierarchy Based
- Density Based
- Hybrid methods

Partition Based Clustering

K-Means Iteration 1

Partition Based

- Clusters defined as a fixed size partition
- Objectives minimize intra-cluster distances or maximize likelihood
- K-Means, Gaussian Mixture Models (GMMs)
- Example of K-Means++ on **supervised** embedding

Partition Based

- Clusters defined as a fixed size partition
- Objectives minimize intra-cluster distances or maximize likelihood
- K-means, Gaussian mixture models
- Example of k-means++ on unsupervised embedding

Gaussian Mixture Models (GMMs)

- k Gaussian distributions
- $\mathcal{N}(\mu_j, \Sigma_j)$
- Sampled probabilities π_i
- Maximize the likelihood of the samples

 $\prod_{i=1}^{N} \sum_{j=1}^{k} \pi_j p_{\mathcal{N}}(x_i \mid \mu_j, \Sigma_j)$

Identifying Structure in Data

What can go wrong?

Ignoring Geometry

- Partition models assume specific cluster shapes: spheres ellipsoids
- Topology is ignored
- Foliated clusters are often split incorrectly

K-means Iteration 0

Ignoring Geometry

- Often occurring on datasets with transforms
- Novel view synthesis, robotic vision, reinforcement learning, equivariant representation learning, disentanglement
- Dimensionality reduction can simplify shapes

Columbia Object Image Library (COIL-20), S. A. Nene, S. K. Nayar and H. Murase, Technical Report CUCS-005-96, February 1996

K-Means Iteration 1

Ignoring Geometry

- Often occurring on datasets with transforms
- Novel view synthesis, robotic vision, reinforcement learning, equivariant representation learning, disentanglement
- Dimensionality reduction can simplify shapes

Ignoring Geometry

https://github.com/Fyusion/LLFF?tab=readme-ov-file

assembly

basketball

dial turn

door open

button press topdown

drawer close door unlock

lever pull

button press button press topdown wall

https://meta-world.github.io

https://sunset1995.github.io/HorizonNet

Identifying Structure in Data

K-Means Iteration 1

Cluster assignment

- Single clusters split
- Clusters glued together
- Initialization is key: k-means++
- Can use a larger k with a regularized model: Dirichlet Process
 Gaussian Mixture Model (DPGMM)

Can be slow

- K-means could need multiple iterations I to converge
- Using more complex models like GMMs increases the computational cost a lot (inverse of a DxD matrix)
- Initial dimensionality reduction helps

K-Means	$0.27s\pm0.037$
K-Means++	$2.14s\pm0.285$
GMM	$57.7s\pm6.37$
DPGMM	$45.7s \pm 4.31$

Time comparison on DINOv2 embeddings of Imagenette

Hierarchy Based Clustering

Hierarchical Clustering Dendrogram - Top 7 levels

Hierarchy Based

- Top-down: Divisive
- Bottom-up: Agglomerative
- We will focus on the second one

Identifying Structure in Data

Hierarchical Aggl. Clustering (HAC)

- Start from single points
- On each step merge A, B with a linkage criterion
 - $\circ \quad \mathbf{Single} \quad \min_{a \in A, b \in B} d(a, b)$
 - Complete $\max_{a \in A, b \in B} d(a, b)$
 - $\circ \quad \text{Average} \quad \underset{a \in A, b \in B}{E}(d(a, b))$

Hierarchical Aggl. Clustering (HAC)

- Start from single points
- On each step merge A, B with a linkage criterion
 - Variance

$$Var(A \cup B) - Var(A) - Var(B)$$

• Ward

$$\sum_{A\cup B} ||x - E(A \cup B)||^2$$

$$-\sum_{A} ||x - E(A)||^2 - \sum_{B} ||x - E(B)||^2$$

Identifying Structure in Data

What can go wrong?

Ignoring Geometry

- Attempt to capture topology with a tree
- Better than partition based
- Mistakes tend to happen on higher levels of the tree
- Method is partly partition based

Cluster Split at Level 2

Ignoring Geometry

- Attempt to capture topology with a tree
- Better than partition based
- Mistakes tend to happen on higher levels of the tree
- Using local linkages like single linkage helps

Clusters merged

- Especially on datasets with overlapping clusters
- Here global linkage criteria can help
- Can require a few more clusters than expected and visually separate
- Sensitive to outliers

Density Based Clustering

DBSCAN

- Parameters: ε, minPts
- Core points: $p \in X, |B(p, \varepsilon) \cap X| \ge minPts$
- Directly reachable:
- $\exists p, \ p \text{ is a core point, } d(p,q) < \varepsilon$
- Reachable:
- $\exists p = p_0, \ldots, p_n = q$
- $\forall i \leq n-1 \ p_{i+1}$ reachable from p_i
- Start from core points and connect reachable points

DBSCAN Cluster 1, Points assigned: 1

What can go wrong?
What can go wrong?

- Parameter tuning can be challenging and subjective
- Varying data densities are hard to handle

DBSCAN Cluster 1, Points assigned: 1

What can go wrong?

- Parameter tuning can be challenging and subjective
- Varying data densities are hard to handle

DBSCAN Cluster 1, Points assigned: 1

Hybrid Methods

- Core distance: $core_k(p)$
- Mutual Reachability Distance

 $d_k(p,q) = \max\{core_k(p), core_k(q), d(p,q)\}$

- Core distance: $core_k(p)$
- Mutual Reachability Distance

 $d_k(p,q) = \max\{core_k(p), core_k(q), d(p,q)\}$

- Core distance: $core_k(p)$
- Mutual Reachability Distance

 $d_k(p,q) = \max\{core_k(p), core_k(q), d(p,q)\}$

• Condensed tree: split only when clusters are formed

- Core distance: $core_k(p)$
- Mutual Reachability Distance

 $d_k(p,q) = \max\{core_k(p), core_k(q), d(p,q)\}$

- Condensed tree: split only when clusters are formed
- Stability: $\sum_{p \in C} (\lambda_p \lambda_{birth})$
- Select clusters stabler than their subclusters

- Core distance: $core_k(p)$
- Mutual Reachability Distance

 $d_k(p,q) = \max\{core_k(p), core_k(q), d(p,q)\}$

- Condensed tree: split only when clusters are formed
- Stability: $\sum_{p \in C} (\lambda_p \lambda_{birth})$
- Select clusters stabler than their subclusters

FINCH

- Connect 1-NNs in an agglomerative way
- Reduce the components to their centroids
- Repeat till a hierarchy is built
- Hybrid of hierarchical and partition based clustering

Identifying Structure in Data

Finch Layer 6

FINCH

- Connect 1-NNs in an agglomerative way
- Reduce the components to their centroids
- Repeat to get a hierarchy
- Hybrid of hierarchical and partition based clustering
- Designed to be fast
- Based on observations and a theorem of Eppstein et. al, 1-NN graphs are small

What can go wrong?

Ignoring Geometry

- Due to the partition-based part of the algorithm
- More intense on the higher levels of the tree
- Can be fixed by applying a more geometry-friendly algorithm after some level

Density Differences

- The algorithm does not detect density on the data manifold, but on the ambient space
- Sparse clusters with point close to each other could be merged
- Reducing dimensionality with a manifold-aware algorithm can help

Evaluation and number of clusters

Clustering Evaluation

- Internal Metrics
 - Measure the quality of the clustering without external information/ground truth (Unsupervised)
 - Examples: Silhouette Score, Davies-Bouldin Index
- External Metrics
 - Compare the clustering against a ground truth (Supervised)
 - Examples: Adjusted Rand Index, Normalized Mutual Information

Number of clusters

- Subjective, need some prior knowledge to estimate
- Different methods exist like the elbow method, GAP statistic, regularization to discard clusters, selection of hierarchy levels, HDBSCAN
- Do not work that easily on real-world datasets out of the box
- A hierarchy might be enough in some cases optimal hierarchy

Runtime

K-Means	$0.27s \pm 0.037$
K-Means++	$2.14s \pm 0.285$
GMM	$57.7s \pm 6.37$
DPGMM	$45.7s \pm 4.31$
HAC	$8.73s \pm 1.014$
DBSCAN	$0.35s \pm 0.099$
HDBSCAN	$63.82s \pm 4.011$
FINCH	$0.59s \pm 0.126$

Dataset size: 10,000 points, 10 clusters

Runtime

Two example Use Cases

Example: Multimodal Retrieval

planet earth

How can we access all footage of snow leopards?

Identifying Structure in Data

Video

Frames

Frame-level Embeddings

Video

Frames

Frame-level Embeddings

Clustering

Video Segments

Temporally-Weighted Hierarchical Clustering for Unsupervised ActionSegmentation, Sarfraz et al. CVPR 2021

Top-5 results for Query: "footage on snow leopards"

Identifying Structure in Data

Example: Data Understanding & Annotation

Clustering and Dimensionality Reduction

- PCA: Preserves linear structure
- t-SNE: Preserves local neighbor distributions
- UMAP: Preserves local connectivity
- h-NNE: Preserves hierarchical clustering structures

Visualization of an industrial Time Series dataset for Anomaly detection

Data Annotation & Understanding

Identifying Structure in Data

Data Annotation & Understanding

Salar The Edit View Thistory Bookmarks Develop Window Thep	,				Q S Wed 13.	Nov 10:02
🔴 🕘 💼 Private < >		Not Secure 0.0.0.0	0		۵	+ ©
					Settings	
2D 3D				Annotation S	Settings	
						12
				Multise- lect		
				Point_s- caling		10.00
					#404040	
					#161616	
				Class select	tion	
					no_class	*
					#fffff	
				Sa	ave annotations	
	Enter text here	Choose File no file selected	Sho For is a get or Submit	those of us with ce lifesaver and what ting it at almost hall nealth food store! I meal - all flavors!!!<	eliac disease this p could be better th f the price of the g ove McCann's ins br /> Thank	product han grocery stant s, <br< th=""></br<>

Labeling Speed in Latent Space

SpaceWalker: Traversing Representation Spaces for Fast Interactive Exploration and Annotation of Unstructured Data, Heine et al. MLVis 2025

Identifying Structure in Data

Takeaways

- A lot of tradeoffs, select a good method for your problem
 - Accuracy vs. Speed
 - Method Complexity

Takeaways

- A lot of tradeoffs, select a good method for your problem
 - Accuracy vs. Speed
 - Model Complexity
- Not all methods or implementations scale well to large data
 - Memory Usage
 - Computational Time

Takeaways

- A lot of tradeoffs, select a good method for your problem
 - \circ Accuracy vs. Speed
 - Model Complexity
- Not all methods or implementations scale well to large data
 - Memory Usage
 - Computational Time
- Importance of Distance Metrics
 - Data Modality Sensitivity
 - Impact on Clustering Results
 - Custom Metrics

Thanks for your attention!

References

- Silhouette Score
 - Measures how similar an object is to its own cluster compared to other clusters

$$S(i) = \frac{b(i) - a(i)}{\max(a(i), b(i))}$$

- Failure Modes: Can be misleading if clusters have different densities or are not well-separated
- Considerations: Works best with convex clusters

- Davies-Bouldin Index
 - Measures the average similarity ratio of each cluster with its most similar cluster

$$DB = \frac{1}{N} \sum_{i=1}^{N} \max_{j \neq i} \left(\frac{\sigma_i + \sigma_j}{d_{ij}} \right)$$

0

- Failure Modes: Sensitive to the shape and size of clusters
- Considerations: Lower values indicate better clustering

- Adjusted Rand Index (ARI)
 - Measures the similarity between two data clusterings, adjusting for chance

$$ARI = \frac{RI - \text{Expected RI}}{\max(RI) - \text{Expected RI}}$$

- Failure Modes: Can be affected by the number of clusters and the size of the dataset
- Considerations: Suitable for comparing clustering results with a known ground truth

- Normalized Mutual Information (NMI)
 - Measures the amount of information shared between the clustering and the ground truth

$$NMI = \frac{2 \times I(C; K)}{H(C) + H(K)}$$

- Failure Modes: Can be affected by the distribution of cluster sizes
- Considerations: Higher values indicate better agreement with the ground truth

Expectation Maximization

• Expectation Step

 $w_{ij} = \frac{\pi_j p_{\mathcal{N}}(x_i | \mu_j, \Sigma_j)}{\sum_{s=1}^k \pi_s p_{\mathcal{N}}(x_i | \mu_s, \Sigma_s)}$

• Maximization Step $\pi_{j}^{new} = \frac{1}{N} \sum_{i=1}^{N} w_{ij}$

Expectation Maximization

• Expectation Step

$$w_{ij} = \frac{\pi_j p_{\mathcal{N}}(x_i | \mu_j, \Sigma_j)}{\sum_{s=1}^k \pi_s p_{\mathcal{N}}(x_i | \mu_s, \Sigma_s)}$$

• Maximization Step

$$\mu_{j}^{new} = \frac{\sum_{i=1}^{N} w_{ij} x_{i}}{\sum_{i=1}^{N} w_{ij}}$$
$$\Sigma_{j}^{new} = \frac{\sum_{i=1}^{N} w_{ij} (x_{i} - \mu_{j})^{\top} (x_{i} - \mu_{j})}{\sum_{i=1}^{N} w_{ij}}$$

Identifying Structure in Data

Complex methods tricky to use

- Are slower
- Numerically unstable due to large number of dimensions or non positive-definite covariance matrices
- Can regularize the matrices
- Reducing dimensionality and aligning the dimensions can help a lot, PCA

Clusters merged

- Especially on datasets with overlapping clusters
- Here global linkage criteria can help
- Can require a few more clusters than expected and visually separate
- Sensitive to outliers

DBSCAN

- Parameters: ε, minPts
- Core points: $p \in X, |B(p, \varepsilon) \cap X| \ge minPts$
- Directly reachable:
- $\exists p, \ p \text{ is a core point, } d(p,q) < \varepsilon$
- Reachable:
- $\exists p = p_0, \ldots, p_n = q$
- $\forall i \leq n-1 \ p_{i+1}$ reachable from p_i
- DBSCAN*: Core points

DBSCAN Cluster 1, Points assigned: 1

